Abstract

As part of a program aimed at exploring the structure- activity relationships of 2',4'-bridged nucleic acid (BNA) containing antisense oligonucleotides (ASOs), we report the synthesis and biophysical and biological properties of R- and S-5'-Me LNA modified oligonucleotides. We show that introduction of a methyl group in the (S) configuration at the 5'-position is compatible with the high affinity recognition of complementary nucleic acids observed with LNA. In contrast, introduction of a methyl group in the (R) configuration reversed the stabilization effect of LNA. NMR studies indicated that the R-5'-Me group changes the orientation around torsion angle γ from the +sc to the ap range at the nucleoside level, and this may in part be responsible for the poor hybridization behavior exhibited by this modification. In animal experiments, S-5'-Me-LNA modified gapmer antisense olignucleotides showed slightly reduced potency relative to the sequence matched LNA ASOs while improving the therapeutic profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.