Abstract
Synaptic configurations underpin how the nervous system processes sensory information to produce a behavioral response. This is best understood for chemical synapses, and we know far less about how electrical synaptic configurations modulate sensory information processing and context-specific behaviors. We discovered that innexin 1 (INX-1), a gap junction protein that forms electrical synapses, is required to deploy context-specific behavioral strategies underlying thermotaxis behavior in C.elegans. Within this well-defined circuit, INX-1 couples two bilaterally symmetric interneurons to integrate sensory information during migratory behavior across temperature gradients. In inx-1 mutants, uncoupled interneurons display increased excitability and responses to subthreshold sensory stimuli due to increased membrane resistance and reduced membrane capacitance, resulting in abnormal responses that extend run durations and trap the animals in context-irrelevant tracking of isotherms. Thus, a conserved configuration of electrical synapses enables differential processing of sensory information to deploy context-specific behavioral strategies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have