Abstract

This paper describes a novel design for capacitive sensors or chemical sensors, which features configurable interdigitated electrodes: The electrode spacing can be varied by means of switches on the CMOS chip. This new design allows for performing two capacitive measurements with one single-sensor capacitor so that the number of sensors required to acquire a certain amount of information can be significantly reduced. The use of the same sensor and the same polymer layer for two measurements at a different electrode periodicity provides a better signal quality for the difference signal since detrimental influences, such as humidity and sensor drift, are similar for both electrode configurations and are strongly correlated. Such high signal quality is required for, e.g., the successful recognition of n-octane in the presence of tenfold larger background signals of humidity or, in general, for the determination of low analyte concentrations in humid air. The baseline drift in the concentration predictions based on the differential signal from the two electrode configurations was an order of magnitude lower than that for uncorrelated signals produced by two separate interdigitated capacitors on the same chip. Since the number of required sensors is reduced and, owing to the differential readout of two electrode configurations, reference capacitors are no longer necessary, the overall chip size and/or the number of sensor chips and, consequently, costs can be considerably reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.