Abstract

Time-variant reliability analysis aims at revealing the time evolution of the reliability of an engineered system under time-dependent uncertainties that are best described by random processes. In practice, it is still a grand challenge to handle random process in time-variant reliability analysis due to the extremely high computational cost. In this work, a new adaptive extreme response surface (AERS) approach is proposed for time-variant reliability problems. With AERS, the dimensionality of a random process is first reduced to a set of standard normal variables and corresponding deterministic orthogonal functions based on spectral decomposition. As a result, the limit state function is reformulated as a function of only random variables and time. Next, Gaussian process (GP) models are constructed as surrogate models for predicting the value of limit state function at all discretized time nodes to approximate the extreme response surface. The accuracy of GP surrogate models is quantified by a confidence level measure and continuously improved through the sequential adaptive sampling. Using the GP surrogate models, time-dependent reliability is computed via Monte Carlo simulations (MCS). Two case studies are used to demonstrate the effectiveness of the AERS method for time-variant reliability analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.