Abstract
Consider a distribution with several parameters whose exact values are unknown and need to be estimated using the maximum-likelihood technique. Under a regular case of estimation, it is fairly routine to construct a confidence region for all such parameters, based on the natural logarithm of the corresponding likelihood function. In this article, we investigate the case of doing this for only some of these parameters, assuming that the remaining (so called nuisance) parameters are of no interest to us. This is to be done at a chosen level of confidence, maintaining the usual accuracy of this procedure (resulting in about 1% error for samples of size , and further decreasing with 1/n). We provide a general solution to this problem, demonstrating it by many explicit examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.