Abstract
Statistical inference on the location of the optima (global maxima or minima) is one of the main goals in the area of Response Surface Methodology, with many applications in engineering and science. While there exist previous methods for computing confidence regions on the location of optima, these are for linear models based on a Normal distribution assumption, and do not address specifically the difficulties associated with guaranteeing global optimality. This paper describes distribution-free methods for the computation of confidence regions on the location of the global optima of response surface models. The methods are based on bootstrapping and Tukey’s data depth, and therefore their performance does not rely on distributional assumptions about the errors affecting the response. An R language implementation, the package OptimaRegion, is described. Both parametric (quadratic and cubic polynomials in up to 5 covariates) and nonparametric models (thin plate splines in 2 covariates) are supported. A coverage analysis is presented demonstrating the quality of the regions found. The package also contains an R implementation of the Gloptipoly algorithm for the global optimization of polynomial responses subject to bounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.