Abstract
Thailand is a country that is prone to both floods and droughts, and these natural disasters have significant impacts on the country's people, economy, and environment. Estimating rainfall is an important part of flood and drought prevention. Rainfall data typically contains both zero and positive observations, and the distribution of rainfall often follows the delta-lognormal distribution. However, it is important to note that rainfall data can be censored, meaning that some values may be missing or truncated. The interval estimator for the ratio of means will be useful when comparing the means of two samples. The purpose of this article was to compare the performance of several approaches for statistically analyzing left-censored data. The performance of the confidence intervals was evaluated using the coverage probability and average length, which were assessed through Monte Carlo simulation. The approaches examined included several variations of the generalized confidence interval, the Bayesian, the parametric bootstrap, and the method of variance estimates recovery approaches. For (ξ1, ξ2) = (0.10,0.10), simulations showed that the Bayesian approach would be a suitable choice for constructing the credible interval for the ratio of means of delta-lognormal distributions based on left-censored data. For (ξ1, ξ2) = (0.10,0.25), the parametric bootstrap approach was a strong alternative for constructing the confidence interval. However, the generalized confidence interval approach can be considered to construct the confidence when the sample sizes are increase. Practical applications demonstrating the use of these techniques on rainfall data showed that the confidence interval based on the generalized confidence interval approach covered the ratio of population means and had the smallest length. The proposed approaches' effectiveness was illustrated using daily rainfall datasets from the provinces of Chiang Rai and Chiang Mai in Thailand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.