Abstract

The cone length Cl(f) of a map f: X → Y is defined to be the least number of attaching maps possible in a conic (or iterated mapping cone) structure for f. Cone length is a homotopy invariant in the sense that if φ: X → X and ρ: Y → Y are homotopy equivalences then Cl (ρ°f°φ) = Cl(f). Furthermore Cl(f) depends only on the homotopy class of f. It was shown by Ganea [8] that the cone length of the map * → X coincides with the strong Lusternik-Schnirelmann category of X as a space (see Proposition 1.6 below). Recent work of Cornea ([3]–[6]) is much concerned with cone length and its role in critical point theory. For example, let f be a smooth real valued function on a manifold triad (M; V0, V1) with V0 ≠ θ. Under certain conditions, if f has only “reasonable” critical points then it must have at least Cl(V0↪M) of them (see [6]).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call