Abstract
Existing critical point theories including metric and topological critical point theories are difficult to be applied directly to some concrete problems in particular polyhedral settings, because the notions of critical sets could be either very vague or too large. To overcome these difficulties, we develop the critical point theory for nonsmooth but Lipschitzian functions defined on convex polyhedrons. This yields natural extensions of classical results in the critical point theory, such as the Liusternik-Schnirelmann multiplicity theorem. More importantly, eigenvectors for some eigenvalue problems involving graph 1-Laplacian coincide with critical points of the corresponding functions on polytopes, which indicates that the critical point theory proposed in the present paper can be applied to study the nonlinear spectral graph theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.