Abstract

When human tooth enamel is heated either in vacuum or air it presents drastic changes in electrical susceptibility, conductivity and structural properties. In this paper we report an insulator-conductive transition which is observed in air around 350°C where enamel conductivity changes drastically and its electrical resistance decreases from 1015 to 105 Ω that is, it goes from an insulator to a super-ionic ceramic behavior. This transition, first evidenced in vacuum by electron microscopy observations, is now completely determined by a.c. impedance spectroscopy technique and its characterization was carried out as a function of the frequency and temperature. X-ray in situ heating diffraction experiments show that there is no structural phase transition during a wide range of temperature including the one where the conductivity transition occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.