Abstract

Single-walled carbon nanotubes (SWNTs), prepared by metal-catalysed laser ablation of graphite, form close-packed bundles or ‘ropes;1. These rope crystallites exhibit metallic behaviour above 50K (ref. 2), and individual tubes behave as molecular wires, exhibiting quantum effects at low temperatures3,4. They offer an all-carbon host lattice that, by analogy with graphite5 and solid C60 (ref. 6), might form intercalation compounds with interesting electronic properties, such as enhanced electrical conductivity and superconductivity. Multi-walled nanotube materials have been doped with alkali metals7 and FeCl3 (ref. 8). Here we report the doping of bulk samples of SWNTs by vapour-phase reactions with bromine and potassium—a prototypical electron acceptor and donor respectively. Doping decreases the resistivity at 300K by up to a factor of 30, and enlarges the region where the temperature coefficient of resistance is positive (the signature of metallic behaviour). These results suggest that doped SWNTs represent a new family of synthetic metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.