Abstract

Currently, rechargeable lithium batteries are representative of high-energy-density battery systems. Nevertheless, the development of rechargeable lithium batteries is confined by numerous problems, such as anode volume expansion, dendrite growth of lithium metal, separator interface compatibility, and instability of cathode interface, leading to capacity fade and performance degradation of batteries. Since the 21st century, metal–organic frameworks (MOFs) have attracted much attention in energy-related applications owing to their ideal specific surface areas, adjustable pore structures, and targeted design functions. The insulating characteristics of traditional MOFs restrict their application in the field of electrochemistry energy storage. Recently, some teams have broken this bottleneck through the design and synthesis of electron- and proton-conductive MOFs (c-MOFs), indicating excellent charge transport properties, while the chemical and structural advantages of MOFs are still maintained. In this review, we profile the utilization of c-MOFs in several rechargeable lithium batteries such as lithium-ion batteries, Li–S batteries, and Li–air batteries. The preparation methods, conductive mechanisms, experimental and theoretical research of c-MOFs are systematically elucidated and summarized. Finally, in the field of electrochemical energy storage and conversion, challenges and opportunities can coexist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.