Abstract

In this research, we report the improved high-power electrical properties and the conductive mechanism of the 0.40Bi(Sc3/4In1/4)O3–0.58PbTiO3–0.02Pb(Mg1/3Nb2/3)O3–xMnO2 (BSI–PT–PMN–xMn, x = 0.0–0.8) system synthesized by a modified two-step solid state reaction method. A pure perovskite phase has been detected by the X-ray diffraction analysis of the BSI–PT–PMN–xMn ceramics, and the mechanical quality factor Qm has been found to increase from 28 to 210 with Mn content increasing from 0.0 to 0.8. The DC resistivity measurement indicated that the resistivity of the BSI–PT–PMN–xMn ceramics increases firstly, reaching the maximum at x = 0.4, and then decreases with more Mn modified. The conduction behavior can be described by the intrinsic charge carriers conduction mechanism and extrinsic semiconductor conductive mechanism in different temperature range. The high DC resistivity over 109 Ω cm at 300 °C together with the good electrical properties of piezoelectric constant d33 336 pC/N, planar electromechanical coupling factor kp 42.8%, mechanical quality factor Qm 120 and Curie temperature Tc 414 °C of the BSI–PT–PMN–0.4Mn ceramics makes it promising candidates for high temperature high-power piezoelectric applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call