Abstract

Conductive elastic materials are formed by distributing conductive particles within an elastic polymer. We consider a novel composite based on dendritic nickel particles that exhibit remarkably strong negative piezoresistivity with an increase in conductivity of up to 10 orders of magnitude with strains of the order of 0.2. A vital factor for the conductivity of conductive elastomers is the concentration of conductive fillers and many aspects can be understood in terms of percolation theory. In this system the concentration of particles within the composite does not change with strain, yet due to the shape of the particles, the concentration of electrical contacts between the particles does change. We have developed a new model based on the concentration of contact sites, rather than particles which enables us to successfully model this remarkable strain-dependence of conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.