Abstract
AbstractTo reveal the role of crystalline polymers in carbon black (CB) filled amorphous polymer composites and improve the mechanical properties of composite films, CB/poly(ethylene glycol) (PEG)/poly(methyl methacrylate) (PMMA) composites were synthesized by polymerization filling in this work. The electrical conductive property and response to organic solvent vapors of the composites were investigated. The composites, characterized by a relatively low percolation threshold (∼ 2.1 wt %), had lower resistivity than CB/PMMA composites prepared with the same method because of the different dispersion status of CB particles in the matrix polymer. The concentration and molecular weight of PEG notably influenced the electrical response of the composites against organic vapors. The drastic increase in the electrical resistance of the composites in various organic vapors could be attributed mainly to the swelling of the amorphous polymer matrix in the solvent but not to that of the crystalline polymer. These findings could help us to understand the conductive mechanism and electrical response mechanism of the composites as promising gas‐sensing materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.