Abstract

Thin films of poly(methyl methacrylate) (PMMA),poly(vinyl acetate) (PVAc) and carbon nanotube composites were produced by different coating methods. The best way to produce the carbon nanotube / PMMA / PVAc composite film with conductive network is dispersing carbon nanotubes in PMMA and PVAc by ultrasonic and by solution casting. Electrical resistance responses of carbon nanotube / PMMA / PVAc composite sensors against various organic vapors at low concentrations are investigated. The experimental results indicate that the composites have high selectivity to various organic vapors at the same concentration. In addition, the electric resistance response of the composites against organic vapors takes place in step with their vapor adsorption procedure. Compatible blends of poly(methyl methacrylate) and poly(vinyl acetate) would be a good candidate to produce a series of electrically conducting carbon nanotubes composite film whose resistance is sensitive to the nature and concentration of an analyte in the vapor phase. The results indicate that the carbon nanotube / PMMA / PAVc composite film can be used as a novel organic vapor sensor to detect, quantify and discriminate various organic vapors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.