Abstract

AbstractThis work is concerned with the preparation and characterization of composite materials prepared by compression molding of a mixture of aluminum flakes and nylon 6 powder. The electrical conductivity, density, hardness and morphology of composites were investigated. The electrical conductivity of the composites is < 10−11 S/cm unless the metal content reached the percolation threshold, beyond which the conductivity increased markedly by as much as 1011. The volume fraction of conductive filler at the percolation threshold was calculated from experimental data, by fits to functions predicted by the percolation theory. Decreasing the average particle diameter of filler leads to increased percolation threshold (it varies from 23 to 34 vol% for the three different fillers studied) and decreased maximal conductivity of composites. The density of the composites was measured and compared with values calculated assuming different void levels within the samples. Furthermore, it is shown that for certain sizes of particle filler, the hardness decreases initially with the increase of metal concentration, possibly because of poor surface contact with the nylon matrix, but, starting from a certain value, there is a hardness increase. For the smallest particle filler, the hardness of samples is not influenced by the presence of the filler.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call