Abstract
For a quantum dot system of fixed geometry, in the presence of random impurities the average conductance over an appropriate range of the Fermi energy decreases as the impurity strength is increased. Can the nature of the corresponding classical dynamics in the dot region affect the rate of decrease? Utilizing graphene quantum dots with two semi-infinite, single-mode leads as a prototypical model, we address the device stability issue by investigating the combined effects of classical dynamics and impurities on the average conductance over the energy range of the first transverse mode. We find that, for chaotic dot systems, the rate of decrease in the average conductance with the impurity strength is in general characteristically smaller than that for integrable dots. We develop a semiclassical analysis for the phenomenon and also obtain an understanding based on the random matrix theory. Our results demonstrate that classical chaos can generally lead to a stronger stability in the device performance, strongly advocating exploiting chaos in the development of nanoscale quantum transport devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.