Abstract

Semiclassical trajectory-based methods can now explain mesoscopic effects (shot-noise, conductance fluctuations, etc) in clean chaotic systems, such as chaotic quantum dots. In the deep classical limit (wavelength much less than system size) the Ehrenfest time (the time for a wavepacket to spread to a classical size) plays a crucial role, and random matrix theory (RMT) ceases to be applicable to the transport properties of open chaotic systems. Here we summarize some of our recent results for shot-noise (intrinsically quantum noise in the current through the system) in this deep classical limit. For systems with perfect coupling to the leads, we use a phase-space basis on the leads to show that the transmission eigenvalues are all 0 or 1-so transmission is noiseless [Whitney-Jacquod, Phys. Rev. Lett. 94, 116801 (2005), Jacquod-Whitney, Phys. Rev. B 73, 195115 (2006)]. For systems with tunnel-barriers on the leads we use trajectory-based semiclassics to extract universal (but non-RMT) shot-noise results for the classical regime [Whitney, cond-mat/0612122].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.