Abstract
We present the results of million atom electronic quantum transport calculations for graphene nanoconstrictions with edges that are smooth apart from atomic scale steps. We find conductances quantized in integer multiples of 2e2/h and a plateau at ~0.5*2e2/h as in recent experiments [Tombros et al., Nature Physics 7, 697 (2011)]. We demonstrate that, surprisingly, conductances quantized in integer multiples of 2e2/h occur even for strongly non-adiabatic electron backscattering at the stepped edges that lowers the conductance by one or more conductance quanta below the adiabatic value. We also show that conductance plateaus near 0.5*2e2/h can occur as a result of electron backscattering at stepped edges even in the absence of electron-electron interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.