Abstract

The problem of local simulation of stagnation point heat transfer to a blunt body is solved within the framework of boundary layer theory on the assumption that the simulation subsonic high-enthalpy flow is in equilibrium outside the boundary layer on the model, while the parameters of the natural flow are in equilibrium at the outer edge of the boundary layer on the body. The parameters of the simulating subsonic flow are expressed in terms of the total enthalpyH 0, the stagnation point pressurep w and the velocityV 1 for the natural free-stream flow in the form of universal functions of the dimensionless modeling coefficientsξ=R m * /R b * (ξ ≤ξ.<1),ζ=V 1/√2H 0 ξ (ζ ≤ ζ.<1) whereR m * and R b * are the effective radii of the model and the body at their stagnation points. Approximate conditions for modeling the heat transfer from a high-enthalpy (including hypersonic) flow to the stagnation point on a blunt body by means of hyposonic (M≪1) flows, corresponding to the case ζ2≪1, are obtained. The possibilities of complete local simulation of hypersonic nonequilibrium heat transfer to the stagnation point on a blunt body in the hyposonic dissociated air jets of a VGU-2 100-kilowatt induction plasma generator [4, 5] are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.