Abstract

The concept of the local similarity of nonequilibrium boundary layers in high-enthalpy gas flows past blunt bodies is briefly described. The technical possibilities of the VGU-4 induction high-frequency plasmatron in modeling the aerodynamic heating of the hypothetical Pre-X (CNES) spacecraft in the vicinity of the stagnation point of a high-enthalpy air flow are presented. The engineering approach to quantitatively reproduce the thermochemical effect of a dissociated air flow on the vehicle surface in the high-heat region of the terrestrial entry trajectory is developed. In this approach the full-scale values of the total enthalpy, the stagnation pressure, and the velocity gradient at the stagnation point near the surface are reproduced in the experiment. The effective coefficients of O and N atom recombination on a silicone carbide (SiC) surface are determined under the conditions similar with those of the peak heating of the Pre-X vehicle surface in the vicinity of the flow stagnation point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.