Abstract

The characteristics and parameters of the plasma of an overvoltage nanosecond discharge in oxygen, which was ignited between zinc electrodes in oxygen, are presented. Zinc vapors were introduced into the discharge due to microexplosions of natural inhomogeneities on the surfaces of zinc electrodes in a strong electric field. This creates the prerequisites for the synthesis of thin nanostructured zinc oxide films, which can be deposited on a rigid dielectric substrate placed near the electrode system. The results of a study of the optical characteristics of an overvoltage nanosecond discharge with a discharge gap of d=2mm are presented. The identification of the plasma radiation spectra made it possible to establish the main excited plasma products that form the plasma UV radiation spectrum and simultaneously act as a pulsed source of clusters and small particles of zinc oxide. The characteristics of an overvoltage nanosecond discharge in air between polycrystalline electrodes made of a supericonic conductor Ag2 S are presented. In the process of microexplosions of inhomogeneities on the working surfaces of electrodes in a strong electric field, vapors of the Ag2 S compound and its dissociation products in plasma are introduced into the interelectrode space. This creates prerequisites for the synthesis of thin structured films that have the properties of superionic conductors and can be deposited on a dielectric substrate placed near the discharge gap. The spatial, electrical, and spectral characteristics of the discharge, the Raman scattering spectra of the synthesized films, and the homogeneity of their surface are studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.