Abstract

AbstractMagma transfer, i.e., dike propagation, is partly controlled by Young's modulus (elasticity) contrasts (ratio upper layer to lower layer modulus) in the host rock. Here we try to better constrain the elasticity contrasts controlling the propagation velocity of dikes and their arrest. We simulate dike propagation in layered elastic media with different elasticity contrasts. Salted gelatin and water represent host rock and magma, respectively. For common density ratios between magma and host rock (~1.1), velocity variations are observed and a critical threshold in the elasticity contrast between layers results in the Young's modulus ratio of 2.1 ± 0.6. Naturally occurring elasticity contrasts can be much higher than this experimental threshold, suggesting that dike arrest due to heterogeneous elastic host rock properties is more frequent than expected. Examples of recently deflected or stalled dikes inside volcanoes and the common presence of high‐velocity bodies below volcanoes suggest that better defining elasticity contrasts below volcanoes helps in forecasting eruptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.