Abstract
This article concerns the statistical inference for the upper tail of the conditional distribution of a response variable Y given a covariate X = x based on n random vectors within the parametric extreme value framework. Pioneering work in this field was done by Smith (Stat Sci 4:367–393, 1989) and Smith and Shively (Atmos Environ 29:3489–3499, 1995). We propose to base the inference on a conditional distribution of the point process of exceedances given the point process of covariates. It is of importance that the conditional distribution merely depends on the conditional distribution of the response variable given the covariates. In the special case of Poisson processes such a result may be found in Reiss (1993). Our results are valid within the broader model where the response variables are conditionally independent given the covariates. It is numerically exemplified that the maximum likelihood principle leads to more accurate estimators within the conditional approach than in the previous one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.