Abstract

Rats not only avoid ingesting a substance associated with LiCl toxicosis, but they display rejection reflexes (e.g., gapes) to its taste; this latter response is thought to reflect disgust or taste aversion. Prior work has shown that rats also avoid consuming foods/fluids associated with other adverse gastrointestinal (GI) effects like lactose indigestion but without the concomitant change in oromotor responses (taste reactivity; TR) indicative of aversion. Because of interpretive limitations of the methods used in those studies, we revisited the taste aversion-avoidance distinction with a design that minimized non-treatment differences among groups. Effects on intake and preference (Experiments 1a, 1b, and 2), as well as consummatory (TR, Experiment 1a and 1b) and appetitive (Progressive Ratio, Experiment 2) behaviors to the taste stimulus were assessed after training. In both experiments, rats were trained to associate 0.2% saccharin (CS) with intraduodenal infusions of LiCl, Lactose, or NaCl control. Rats trained with 18% lactose, 0.3 and 1.5 mEq/kg dose of LiCl subsequently avoided the taste CS in post-training single-bottle intake tests and two-bottle choice tests. However, only those trained with 1.5 mEq/kg LiCl displayed post-conditioning increases in taste CS-elicited aversive TR (Experiment 1a and 1b). This dose of LiCl also led to reductions in breakpoint for saccharin. The fact that conditioned avoidance is not always accompanied by changes in other common appetitive and/or consummatory indices of ingestive motivation further supports a functional dissociation between these processes, and highlights the intricacies of visceral influences on taste-guided ingestive motivation.

Highlights

  • The gustatory system is the ultimate sentry of the gastrointestinal (GI) tract

  • One Low LiCl rat seemingly avoided the saccharin on the sixth trial, but, as can be seen in Fig 2, this same rat consumed on par with its usual intake in the subsequent single-bottle test

  • The ability to immediately and proactively detect the presence of potentially harmful foods and limit contact and ingestion is extremely important for survival, yet compared to the study of beneficial foods and fluids, relatively little experimental attention has been paid towards understanding the associative and behavioral mechanisms underlying aversion and avoidance

Read more

Summary

Introduction

The gustatory system is the ultimate sentry of the gastrointestinal (GI) tract. Stimulation of its specialized chemoreceptors in the oral cavity evokes motor outputs that promote, in the case of potentially beneficial substances (e.g., nutrients), or deter, in the case of potentially harmful substances, ingestion. Consistent with the general heuristic put forth by Craig [1], taste-guided behaviors can be further subdivided in to those belonging to the appetitive or consummatory.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call