Abstract

Nonparametric cognitive diagnosis methods are useful in cognitive diagnosis modeling for calibration efficiency, especially when sample size is small or large, or the latent attributes are more complex. This article proposes the Mantel-Haenszel chi-squared statistic as an index for detecting the misspecification of latent attributes as well as testlet effects in nonparametric cognitive diagnosis methods. The proposed theoretical considerations are augmented by simulation studies conducted to assess the performance of the Mantel-Haenszel statistic under various conditions within the nonparametric diagnosis framework, with a special focus on situations were the set of latent abilities assumed to underlie the data was underspecified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.