Abstract
Cognitive diagnosis seeks to assess an examinee’s mastery of a set of cognitive skills called (latent) attributes. The entire set of attributes characterizing a particular ability domain is often referred to as the latent attribute space. The correct specification of the latent attribute space is essential in cognitive diagnosis because misspecifications of the latent attribute space result in inaccurate parameter estimates, and ultimately, in the incorrect assessment of examinees’ ability. Misspecifications of the latent attribute space typically lead to violations of conditional independence. In this article, the Mantel-Haenszel statistic (Lim & Drasgow in J Classif, 2019) is implemented to detect possible misspecifications of the latent attribute space by checking for conditional independence of the items of a test with parametric cognitive diagnosis models. The performance of the Mantel-Haenszel statistic is evaluated in simulation studies based on its Type-I-error rate and power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.