Abstract
X-ray Computed Tomography (CT) is an imaging modality where patients are exposed to potentially harmful ionizing radiation. To limit patient risk, reduced-dose protocols are desirable, which inherently lead to an increased noise level in the reconstructed CT scans. Consequently, noise reduction algorithms are indispensable in the reconstruction processing chain. In this paper, we propose to leverage a conditional Generative Adversarial Networks (cGAN) model, to translate CT images from low-to-routine dose. However, when aiming to produce realistic images, such generative models may alter critical image content. Therefore, we propose to employ a frequency-based separation of the input prior to applying the cGAN model, in order to limit the cGAN to high-frequency bands, while leaving low-frequency bands untouched. The results of the proposed method are compared to a state-of-the-art model within the cGAN model as well as in a single-network setting. The proposed method generates visually superior results compared to the single-network model and the cGAN model in terms of quality of texture and preservation of fine structural details. It also appeared that the PSNR, SSIM and TV metrics are less important than a careful visual evaluation of the results. The obtained results demonstrate the relevance of defining and separating the input image into desired and undesired content, rather than blindly denoising entire images. This study shows promising results for further investigation of generative models towards finding a reliable deep learning-based noise reduction algorithm for low-dose CT acquisition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.