Abstract
What changes in the distribution of crop yields occur as a result of technological innovation? Viewing observed yields as random variables, estimation of the yield distribution conditional on time provides one approach for characterizing distributional transformation. Yields are also affected by weather and other covariates, spatial correlation, and a paucity of data in any one location. Common parametric and nonparametric methods rarely consider these aspects in a unified manner. Comprehensive solutions for describing the distribution of yields can be considered ideal. We implement a Bayesian spatial quantile regression model for the conditional distribution of yields that is distribution-free, includes weather (covariate) effects, smooths across space, and models the complete quantile process. Results provide insight into the temporal and spatial evolution of crop yields with implications for the measurement of technological change. Acknowledgement :
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have