Abstract
Conditional distributions, as defined by the Markov category framework, are studied in the setting of matrix algebras (quantum systems). Their construction as linear unital maps are obtained via a categorical Bayesian inversion procedure. Simple criteria establishing when such linear maps are positive are obtained. Several examples are provided, including the standard EPR scenario, where the EPR correlations are reproduced in a purely compositional (categorical) manner. A comparison between the Bayes map, the Petz recovery map, and the Leifer-Spekkens acausal belief propagation is provided, illustrating some similarities and key differences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.