Abstract

We consider the Jaynes-Cummings (JC) model embedded in a structured environment, where the atom inside an optical cavity will be affected by a hierarchical environment consisting of the cavity and its environment. We propose several effective strategies to control and suppress the decoherence effects to protect the quantum coherence of the JC atom. We study the non-perturbative control of the system dynamics by means of the leakage elimination operators. We also investigate a full quantum state reversal scheme by engineering the system and its coupling to the bath via the Petz recovery map. Our findings conclude that, with the Petz recovery map, the dynamics of the JC atom can be fully recovered regardless of Markov or non-Markovian noises. Finally, we show that our quantum control and recovery methods are effective at protecting different aspects of the system coherence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call