Abstract

A new simple model of self-driven particles in scale-free networks is introduced to understand the emergence of condensation in the natural world. In the model, at each time step, particles are driven to choose their next habitats according to the particle numbers at both the present habitats and neighbors. It is found that the hub effect results in the condensation. The present numerical results as well as the theoretical analysis of condensation transition show the criterion of condensation. Both simulations and theoretical analysis display that there are three phases for different hopping probabilities δ: non-condensation (δ < δc), partial condensation (δc ≤ δ < 1), and complete condensation (δ ≥ δ′c = 1), and the mean occupation particle number at the stationary state is also obtained. Moreover, the noise effect on self-driven particles is studied, and it makes particle numbers at nodes tend towards being identical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.