Abstract
This paper reports a study of condensation heat transfer and pressure drop of R134a inside four enhanced tubes and one plain tube fabricated by Selective Laser Melting (SLM). The results are compared to a plain commercial aluminum tube. The enhanced tubes consist of a tube with a metallic foam structure, a tube with eight short circumferential pin fins, a tube with five long circumferential pin fins and a tube with five twisted pin fins. The experiments were conducted at mass fluxes from 50 to 150 kg/m2 s. Throughout the experiments, the inlet and outlet vapor qualities were maintained at 0.9 and 0.3, respectively. Two saturation pressures of 13.4 bar and 11.6 bar were investigated. The effects of fin height, refrigerant flow direction and mass flux on the heat transfer coefficient and pressure drop were studied. Our results show that for the wavy flow pattern, the saturation pressure, vapor quality, mass flux, refrigerant flow direction and fin structure have significant effects on the condensation heat transfer coefficient and pressure drop. At higher saturation pressures, the head impact on the fins with shorter fin height has a higher heat transfer coefficient than the back impact. For the longer and twisted fins, a reversed trend was observed. With an increase in the mass flux or a decrease in the saturation pressure, the difference in heat transfer coefficients between the head and back impact for the same tube structure reduces. The heat transfer coefficients of the metallic foam tubes are higher than that of the plain SLM tube with a large penalty of pressure drop. The eight-fin tubes yield higher efficiency indices in terms of heat transfer over pressure drop when compared to the other tubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.