Abstract

Nowadays, the demand for obtaining high heat flux values in small volumes has increased with the development of technology. Condensing flow inside mini- and microchannels has been becoming a promising solution for refrigeration, HVAC, air-conditioning, heat pumps, heat pipes, and electronic cooling applications. In these applications, employing mini/microchannels in the condenser design results in the working fluid, generally refrigerant, undergoing a phase change inside the mini/microchannels. On the other hand, the reduction in the hydraulic diameter during condensation gives rise to different flow regimes and heat transfer mechanisms in the mini- and microchannels compared to the conventional channels. Therefore, the understanding of fluid flow and heat transfer characteristics during condensation of refrigerant inside mini- and microchannels has been gaining importance in terms of condenser design. This study presents a state-of-the-art review of condensation studies on refrigerants inside mini- and microchannels. The review includes experimental studies as well as correlation models, which are developed to predict condensation heat transfer coefficients and pressure drop. The refrigerant type, thermodynamical performance, and compatibility, as well as the environmental effects of refrigerant, play a decisive role in the design of refrigeration systems. Therefore, the environmental impacts of refrigerants and current regulations against them are also discussed in the present review.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call