Abstract
Condensation is a ubiquitous phenomenon in nature and industry. Heat transfer rates during dropwise condensation on non-wetting substrates can be 6-8X higher than heat transfer rates during traditional filmwise condensation on wetting substrates. Dropwise condensation on lubricant-infused surfaces (LIS, or SLIPS) is particularly interesting due to high droplet mobility on these surfaces. To accurately predict heat transfer rates during dropwise condensation, the distribution of droplet sizes must be known. Here we present condensation studies of water on aluminum-based lubricant-infused surfaces with a wide range of lubricant viscosities (12–2717cSt) to determine droplet size distributions. Through optical imaging and microscopy, we show that the distribution of droplet sizes on LIS is independent of lubricant viscosity, and agrees well with the model developed by Rose for the distribution of droplet sizes on hydrophobic surfaces, especially in the range 10<r<100µm. Using artificial sweeping experiments and numerical modeling, we investigate the dependence of sweeping rates on the distribution of droplet sizes and on average heat transfer rates. The maximum size to which droplets grow before being swept decreases rapidly with only a modest decrease in sweeping period, from 750 to 62µm. Yet, the distribution of droplet sizes and heat transfer rates are nearly unaffected by the change in sweeping period, due to a relative insensitivity of heat transfer to droplets with radii r>100µm due to a high conduction resistance within these droplets. Our work provides an experimental and analytical framework to predict heat transfer and sweeping rates for water condensation on a vertical plate coated with a LIS or SLIPS surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.