Abstract
Magnetic chitosan particles (MCS) were chemically grafted by m-phenylenediamine (mPD) forming a distinctive shell layer with abundant nitrogenous functional groups and used as an adsorbent for the effective removal of Cr(VI) from aqueous solution. By interaction among functional groups in the facile oxidative polymerization process, the grafting of mPD and its polymers on MCS surface was innovatively realized. Through Fourier-transformed infrared spectroscopy, energy dispersive spectrometer, X-ray photoelectron spectroscopy, etc., the chemical properties of MCS before and after modification were characterized and the concurrent reduction-adsorption mechanism in Cr(VI) adsorption by mPD-MCS was carefully analyzed. The maximal Cr(VI) removal performance of mPD-MCS reached 227.27mg/g, which was significantly better than that of the original MCS. The analysis indicated that Cr(VI) could be efficiently reduced to Cr(III) and the removal of Cr(VI) and Cr(III) was through adsorption and chelation simultaneously by mPD-MCS. Results also indicated that the concurrent reduction-adsorption was enhanced by protonation of nitrogenous functional groups under low pH. The obtained results suggest that mPD-MCS has a good potential in removal and detoxication of Cr(VI) from aqueous solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.