Abstract

ABSTRACTIn this study, a new method for preparation of cross-linked magnetic chitosan particles (MCPs) from steel slag and shrimp shells using green tea extract as crosslinking reagent has been presented. The MCPs obtained were characterized by means of X-ray diffraction analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy and magnetic properties, and then were used to investigate the adsorption properties of Cu(II) and Ni(II) ions in aqueous solutions. The influence of experimental conditions such as contact time, pH value, adsorbent dose and initial metal concentration, and the possibility of regeneration were studied systematically. The Cu(II) and Ni(II) adsorption isotherms, kinetics and thermodynamics have been measured and discussed. The results show that the synthesized MCPs have high adsorption capacity for both metal ions (126.58 mg/g for Cu(II) and 66.23 mg/g for Ni(II)), and have excellent regeneration stability with efficiency of greater than 83% after five cycles of the adsorption–regeneration process. The adsorption process of Ni(II) and Cu(II) on MCPs was feasible, spontaneous and exothermic, and better described by the Langmuir model and pseudo-second-order kinetic equation. The MCPs can be applied as a low cost and highly efficient adsorbent for removal of heavy metals from wastewater due to its high adsorption capacity, easy recovery and good reusability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.