Abstract
In this work, we present a concurrent atomistic-continuum (CAC) method for modeling and simulation of crystalline materials. The CAC formulation extends the Irving-Kirkwood procedure for deriving transport equations and fluxes for homogenized molecular systems to that for polyatomic crystalline materials by employing a concurrent two-level description of the structure and dynamics of crystals. A multiscale representation of conservation laws is formulated, as a direct consequence of Newton's second law, in terms of instantaneous expressions of unit cell-averaged quantities using the mathematical theory of distributions. Finite element (FE) solutions to the conservation equations, as well as fluxes and temperature in the FE representation, are introduced, followed by numerical examples of the atomic-scale structure of interfaces, dynamics of fracture and dislocations, and phonon thermal transport across grain boundaries. In addition to providing a methodology for concurrent multiscale simulation of transport processes under a single theoretical framework, the CAC formulation can also be used to compute fluxes (stress and heat flux) in atomistic and coarse-grained atomistic simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.