Abstract

Most concurrent multiscale methods that employ domain decomposition divide the simulation domain into atomistic and continuum subdomains such that nanoscale defects are described at atomistic resolution while a continuum treatment is employed elsewhere. An example is the concurrent atomistic-continuum (CAC) method. While dislocations can nucleate and migrate in the continuum domain in CAC, they are restricted to prescribed slip planes along interelement boundaries. In this paper, we extend the original CAC method by implementing mesh refinement schemes in a straightforward manner to accommodate a 3-D dislocation network and curved dislocation migration. CAC simulation results are validated by comparing to their equivalent fully atomistic simulations. Augmented with an adaptive mesh refinement scheme, a brittle-to-ductile transition in dynamic fracture response of single crystalline FCC Cu is accurately predicted using CAC simulations. Differing from most multiscale methods, the complexity of the geometric topologies during mesh refinement is avoided in this approach because CAC does not require interelement compatibility. The extended CAC method is expected to apply in multiscale modeling of more complex dislocation activities in crystalline materials up to μm scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.