Abstract

Stochastic Resonance (SR) is a well-known noise-induced phenomenon widely reported in dynamical systems with a threshold, while Inverse Stochastic Resonance (ISR) is an opposing phenomenon observed in the dynamical systems which exhibit bistability between a stable node and a stable limit cycle. This study shows a co-occurrence of SR and ISR, in a minimal circuit of synaptically coupled spiking neurons that is designed to show bistability between quiescence and a persistent firing mode. We identify noise, synaptic and intrinsic parameters ranges that allow for ISR. The minimal computational model, is investigated for a range of parameters, and our simulations indicate that the main features of SR, are the direct results of dynamical properties which lead to ISR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call