Abstract
Mesenchymal stem cells (MSCs) and mesoangioblasts (MABs) are multipotent cells that differentiate into specialized cells of mesodermal origin, including skeletal muscle cells. Because of their potential to differentiate into the skeletal muscle lineage, these multipotent cells have been tested for their capacity to participate in regeneration of damaged skeletal muscle in animal models of muscular dystrophy. MSCs and MABs infiltrate dystrophic muscle from the circulation, engraft into host fibers, and bring with them proteins that replace the functions of those missing or truncated. The potential for systemic delivery of these cells increases the feasibility of stem cell therapy for the large numbers of affected skeletal muscles in patients with muscular dystrophy. The present review focused on the results of preclinical studies with MSCs and MABs in animal models of muscular dystrophy. The goals of the present report were to (a) summarize recent results, (b) compare the efficacy of MSCs and MABs derived from different tissues in restoration of protein expression and/or improvement in muscle function, and (c) discuss future directions for translating these discoveries to the clinic. In addition, although systemic delivery of MABs and MSCs is of great importance for reaching dystrophic muscles, the potential concerns related to this method of stem cell transplantation are discussed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.