Abstract

Evidence assessing the role of B cells and their antibodies, or lack thereof, in the spontaneous resolution of acute HCV infection is conflicting. Utilization of a strictly hepatotropic, HCV-related rodent hepacivirus (RHV) model circumvents many of the challenges facing the field in characterizing the immunological correlates of dichotomous infection outcomes. This study seeks to elucidate the importance of B cells in the clearance of acute RHV infection. µMT mice were infected i.v. with RHV and found to develop chronic infection for over a year. Wild-type (WT) mice depleted of B cells also exhibited persistent viremia that resolved only upon B cell resurgence. The persistent infection developed by B1-8i and AID cre/cre mice revealed that antigen-specific, class-switched B cells or their antibodies were crucial for viral resolution. Virus-specific CD8 + and CD4 + T cells were characterized in these mice using newly developed major histocompatibility complex class I and II tetramers and ex vivo peptide stimulation. Immunoglobulin G (IgG) was purified from the serum of RHV- or lymphocytic choriomeningitis virus Armstrong-infected mice after viral clearance and passively transferred to AID cre/cre recipients, revealing viral clearance only in αRHV IgG recipients. Further, the transfer of αRHV IgG into B cell-depleted recipients also induced viral resolution. This ability of RHV-specific IgG to induce viral clearance was found to require the concomitant presence of CD8 + T cells. Our findings demonstrate a cooperative interdependence between immunoglobulins and the T cell compartment that is required for RHV resolution. Thus, HCV vaccine regimens should aim to simultaneously elicit robust HCV-specific antibody and T cell responses for optimal protective efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call