Abstract

Leishmania donovani tyrosine aminotransferase (LdTAT) is an essential enzyme that catalyzes the first step of amino acid catabolism. To understand LdTAT activity at different pH, molecular dynamics simulations were performed and trajectory and T-pad analysis pad were conducted. Fluorescence spectroscopy of LdTAT at various pH was measured to understand structural stability. UV studies on PLP were performed to determine the binding of the enzyme to cofactor PLP at different pH. The MD simulations showed that the structure of LdTAT was stable and no structural denaturation was observed at pH 2, 7 and 12. LdTAT exhibited the highest activity at pH -8 and fluorescent spectroscopy also corroborated by exhibiting the highest intensity at pH -8. Moreover, no structural denaturation was observed during the pH gradient. UV studies concluded that the aldimine bond forms only around neutral pH and redshift was observed on enzyme binding. From our observation, we hypothesize that the activity of LdTAT is a close interplay between the structure and charges of K286 and PLP. This study may provide significant insight into understanding parasitic enzymes like LdTAT during the life-cycle of Leishmania parasite. Knowledge of such enzyme mechanisms can pave the way for the design and delivery of enzyme-specific inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call