Abstract

We consider the 3-D evolutionary Navier–Stokes equations with a Navier slip-type boundary condition, see (1.2), and study the problem of the strong convergence of the solutions, as the viscosity goes to zero, to the solution of the Euler equations under the zero-flux boundary condition. We prove here, in the flat boundary case, convergence in Sobolev spaces W k, p (Ω), for arbitrarily large k and p (for previous results see Xiao and Xin in Comm Pure Appl Math 60:1027–1055, 2007 and Beirao da Veiga and Crispo in J Math Fluid Mech, 2009, doi: 10.1007/s00021-009-0295-4 ). However this problem is still open for non-flat, arbitrarily smooth, boundaries. The main obstacle consists in some boundary integrals, which vanish on flat portions of the boundary. However, if we drop the convective terms (Stokes problem), the inviscid, strong limit result holds, as shown below. The cause of this different behavior is quite subtle. As a by-product, we set up a very elementary approach to the regularity theory, in L p -spaces, for solutions to the Navier–Stokes equations under slip type boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.