Abstract
The paper presents the conceptual model and the Proof of Concept of a complex mechatronic system which can executes predefined sequential motion cycles, used to create biofeedback reaction in order to improve the human neuromuscular control, the lower limbs muscles endurance and the coxo-femoral joints mobility. This mechatronic system can be an extremely useful tool in physical therapy, sports, medicine and rehabilitation. The system comprises three parts: a portable data acquisition and wireless transmission electronic module that performs complex analysis of the numerical values acquired from tactile force sensors, a stationary automation panel containing a Main Control Unit (MCU) and digital signal interfaces and a complex mechanical cinematic assembly consisting of solenoid valves, pneumatic cylinders and various mechanical parts. The numerical values of the reaction force are acquired from force signal conditioners, filtered and wireless transmitted to a stationary automation panel. The MCU electronic module is programmed to run a specific software application that ensures the proper execution of the motion cycles in order to obtain the feedback control from the human subject. This is due to the fact that the numerical signals and events issued or received by hardware components of the automation panel (digital inputs/outputs, operator panel action, wireless received data) has to be taken into consideration. This complex mechatronic system is a working progress research project.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have