Abstract

On modern mechatronic products, incorporating multiple modes is a common and effective way of dealing with changes in task, requirements, and environment. Modes are established to enable the system to switch from one configuration state to another. However, using the traditional methodology in engineering design, products are considered and designed with fixed configurations. A systematic method to involve and enable the design of changeable configurations is lacking. This paper focuses on product functional models and investigates the conceptual design of multi-modal products, which are identified by their reconfigurability during the operation stage. The author connects the phenomenon of multiple modes to product reconfigurability, asserts function and technology multiplications as the basis of multiple modes, and then specifies that usability and robustness are the key drivers of incorporating multiple modes. At the end of the paper, the author reconciles the conceptual design procedures to derive the principle solutions specifically for multi-modal products. This research on the dynamic characteristics of the product functional model introduced by multiple modes complements the current systematic design methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.