Abstract

Exceptional beam quality is very important to the success of Boron Neutron Capture Therapy (BNCT). In this work we completed a conceptual filter design which provides an epi-thermal neutron beam at the Georgia Tech Research Reactor (GTRR) suitable for BNCT application. Both Monte Carlo (MCNP) and discrete ordinate (ANISN, DORT) based computer codes were used in the filter design and parameter optimization process. The in-vessel portion of this filter, located between the core and the bio-medical facility port, is composed of a series of circular aluminum plates in D2O surrounded by air-filled toroidal aluminum tubing. The tubing increases the buoyancy of the filter structure, reducing the stress placed on the reactor vessel. The ex-vessel filter, located in the existing bio-medical facility port, consists of a series of dry aluminum plates, lithiated aluminum plates, a plate of titanium and a bismuth lead gamma shield in a cadmium housing. The remainder of the cone is void, increasing beam collimation. The integrated epi-thermal neutron flux of 2.5×109 n/cm2/s will keep treatment fractions less than 30 minutes. Both the fast neutron and gamma KERMAs are less than 2×10−11 cGy/n/cm2, allowing the therapeutic dose to be reached before the healthy tissue tolerance is exceeded from background radiations. The current to flux ratio of 0.86 is also excellent for BNCT application. The results show that the GTRR is capable of producing one of the best neutron sources for BNCT application in the United States. Plans to install the filter in the GTRR continue to move forward.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.