Abstract

In conceptual studies and prototypes of aerial vehicles for Urban Air Mobility, batteries are generally adopted as only energy sources. However, batteries have a long charging time that is not suitable for consecutive flights, and a low energy density that limits the range and flight time of the aircraft. For this reason, the hybrid propulsion solution consisting of a battery and a fuel cell has attracted attention in aviation in recent years. This study proposes the conceptual design of a VTOL (Vertical Take-Off and Landing) aircraft for passenger transportation in metropolitan areas by the synergic optimization of the aircraft configuration and the sizing of the propulsion system aimed at minimizing the power request in cruise. In the proposed conceptual design method, VTOL type aircraft is powered by either the battery or the fuel cell according to the flight phase. A multivariate nonlinear optimization problem using as goal the minimization of the fuel cell size is solved. The optimal values of battery size, wing loading, aspect ratio, endurance speed, aircraft weight, maximum lift coefficient, disk loading, rotor solidity, and zero-lift drag coefficient are determined from the solution of the optimization problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.