Abstract

The conceptual design of a nighttime electrochemical system (NECS) based on radiative cooling for generating electrical power from dark night sky is proposed. Such a low temperature and passive device is capable of generating electricity during nighttime without active input of heat. A comprehensively theoretical model is developed to study its performance characteristics and parametric optimum design. The model predicts that an output power density larger than 2 W/m2 at 303.15 K is achievable, which is potentially more advantageous than that of previously proposed nighttime thermoelectric generator. The calculated results show that the heat convection conditions, optimized geometry structure, and the choice of selective radiative cooler play a critical role in improving the device performance. This work reveals the new concept of the NECS and provides important insights for the optimal designs of the NECS, thus paving a new way towards high-performance nighttime electric power generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.